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ABSTRACT 

Anaerobic ammonium oxidation (anammox) process, where anammox bacteria 

convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of 

O2, has been extensively studied since its discovery in the late 1990s. The combined 

nitritation-anammox process represents a promising innovative biological nitrogen 

removal technology, especially for treating wastewater with low chemical oxygen 

demand (COD)/ammonium ratio. Due to the low growth rates of both aerobic and 

anaerobic ammonium-oxidizing bacteria (i.e. AOB and anammox bacteria), efficient 

biomass retention is critical for successful reactor start-up and stable operation.  

In this thesis, two similar laboratory-scale upflow anaerobic sludge blanket (UASB) 

reactors have been developed for cultivating anammox bacteria under complete absence 

of oxygen (UASB #1), and nitritation-anammox biomass with low oxygen levels (UASB 

#2), respectively. The ratio of influent NO2
-
-N to NH4

+
-N was optimized to evaluate the 

long-term performance of the reactor. The observed NO2
-
-N to NH4

+
-N ratios under 

different influent NO2
-
-N to NH4

+
-N ratios did not agree with the proposed ratio of 1.32 

(Eq. (1.3)), but showed a positive correlation with influent ratios. Synthetic wastewater 

with a NO2
-
-N/NH4

+
-N ratio of 1.2 achieved the highest total nitrogen removal 

efficiency of 96-97%. The average ratio of observed NO3
-
-N/NH4

+
-N was much smaller 

than proposed ratio of 0.256. 

The nitritation-anammox reactor operated under the low oxygen level (≤0.5 mg/L) 

for over 250 days was able to remove more than 85% of the supplied total nitrogen loads 

without nitrite accumulation. The nitritation-anammox granules were successfully 
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enriched with typical colors of brown-yellow, reddish, light red, red, etc., depending on 

the microbial community compositions. Granules with porous structures had a mean 

diameter of 3 mm and featured good settling ability. The microbial community 

compositions in UASB #2 reactor, investigated by fluorescence in situ hybridization 

(FISH), showed the coexistence of AOB and anammox bacteria in the granules. In 

addition, the two groups of bacteria exhibited an overlapping growth style, which can 

improve the availability of ammonium for anammox bacteria and facilitate the 

immediate consumption of the nitrite produced by AOB by anammox bacteria. FISH 

results also proved that most nitrite oxidizing bacteria were eliminated under high 

temperature and oxygen-limiting conditions. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation of This Study 

Nutrients such as nitrogen (N) and phosphorus (P) from wastewater effluent and 

agriculture run-off are often directly discharged into water bodies without proper 

treatment. Excessive concentrations of nitrogen and phosphorus in water bodies can 

result in eutrophication which would exert negative impacts on environment. For 

example, eutrophication results in accelerated growth of algae and plankton over other 

more complicated plants, which leads to the depletion of dissolved oxygen, deterioration 

of water quality and shifts of biotic community composition  (Smith et al. 1999, Wolfe 

and Patz 2002). Eutrophication is pervasive in the United States (U.S.), occurring in 78% 

of the coastal areas and 48 % of the reservoirs, lakes and streams (Galloway et al. 2003, 

Selman et al. 2008). Recently, the U.S. EPA nutrient pollution control strategy is urging 

nationwide implementation of new numeric nutrient discharge criteria. More stringent 

nutrient discharge regulations are likely implemented in the near future.  

The energy demand of wastewater treatment plants (WWTPs) accounts for about 3% 

of the U.S. electrical energy load (EPA 2006). Energy costs accounts for 30% of the 

total operation and maintenance costs of WWTPs (Carns 2005). Meanwhile, the aeration 

systems generally account for the greatest portion of energy consumption of WWTPs 

(WEF 2009). For instance, energy cost for aeration in a conventional activated sludge 

treatment process typically represents 45-60% of the plant’s total energy consumption 

(Bolles 2006). Unfortunately, upgrading existing sewage treatment facilities with 

conventional biological nutrient removal (BNR) systems to meet the nutrient discharge 
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criteria will lead to an increase in energy consumption, an economically, 

environmentally and politically undesirable outcome. Traditional BNR technologies 

(nitrification/denitrification) either consume high amount of energy for nitrification, or 

require external organic carbon sources for denitrification.  

Furthermore, the conventional BNR systems can release considerable amount of 

nitrous oxide (N2O), accounting for about 5% of all U.S. greenhouse gas (GHG) 

emissions from anthropic activities (EPA 2014). Nitrous oxide is primarily produced 

through nitrification and denitrification processes. The U.S. emitted 5.1 teragrams of 

carbon dioxide equivalent (Tg CO2 Eq., or million metric tons carbon dioxide equivalent, 

MMTCO2E) of N2O from wastewater treatment in 2011, which has increased by 1.6 Tg 

CO2 Eq. (45.7%), compared with that of 1990 (EPA 2013). The comparative impact of 

N2O on climate change is over 300 times greater than CO2 over a 100-year period, due to 

its long lifespan of approximately 120 years in the atmosphere  (Houghton et al. 2001). 

The proposed innovative biological nitrogen removal system combined partial 

nitrification and anaerobic ammonium oxidation (anammox) processes, so called the 

nitritation-anammox process, requires only 37.5% as much oxygen as the traditional 

BNR technologies, eliminates additional organic carbon sources, and produces less 

excess sludge due to the low growth rates of autotrophic microorganisms. By replacing 

denitrification with the anammox process and reducing nitrification requirements, the 

improved system is expected to reduce both energy demand and N2O emission. The 

successful development of the novel system will not only advance the knowledge in 

biological nitrogen removal, but also provide a sustainable, environment-friendly and 
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cost-effective treatment technology for building or upgrading BNR facilities to meet the 

increasingly stringent nutrient discharge standards.  

1.2 Background 

The traditional BNR process consists of two processes: sequential aerobic 

autotrophic nitrification and anoxic heterotrophic denitrification (Figure 1.1). 

Nitrification is a process of partial oxidation of ammonium to nitrite and further 

oxidation of nitrite to nitrate. Ammonia oxidizing bacteria (AOB, same as nitrous 

bacteria) and nitrite oxidizing bacteria (NOB, same as nitric bacteria) are two groups of 

microorganisms responsible for partial nitrification (PN, also called nitritation, 

nitrosation) and complete nitrification (also known as nitration), respectively. Ammonia 

and nitrite oxidizers are referred to as “nitrifiers or nitrobacteria”. Partial nitrification is 

usually considered as the rate-limiting step of nitrification.  

Denitrification is a process where nitrate is reduced to nitrogen gas under anoxic 

conditions, passing through nitrite, nitric oxide and nitrous oxide. A wide range of 

bacteria called denitrifying bacteria or denitrifiers, equipped with a complete enzyme 

apparatus, are able to carry out the entire sequence of reactions. The reaction equations, 

specific enzymes and major bacteria species involved in nitrification and denitrification 

processes are shown in Table 1.1. The global stoichiometric equations of nitrification 

and denitrification are shown as well (Eq. (1.1) and Eq. (1.2)). It should be noted that all 

these reaction equations do not take biosynthesis into account.  

N2O emissions from the BNR systems has been studied intensively in the past years 

(Ahn et al. 2010, Desloover et al. 2012). AOB were reported to be capable of utilizing 
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NO2
-
 and subsequently NO as alternative electron acceptors, releasing N2O and N2 under 

aerobic to suboxic conditions through the nitrifier denitrification pathway, which was 

considered as a major contributor to N2O emission (Kim et al. 2010, Kool et al. 2011, 

Wrage et al. 2001). Generally, N2O can be produced through different pathways, 

including nitrification, autotrophic denitrification by AOB, and heterotrophic 

denitrification. 

 

Figure 1.1. Traditional BNR process. 

Table 1.1. Summary of traditional BNR process. 
Step Equation Enzyme Major species 

① 2NH4
+ + O2 → 2NH2OH + 2H+   

Ammonia monooxygenase 

(AMO) 
Nitrosomonas,  

Nitrosococcus,  Nitrosospira, 

Nitrosolobus ② 
2NH2OH + 2O2 → 2H+ + 2H2O + 

2NO2
- 

Hydroxylamine dehydrogenase/ 

oxidoreductase (HAO) 

③ 2NO2
- + O2 → 2NO3

- Nitrite oxidase 
Nitrobacter, Nitrococcus, 

Nitrospira, and Nitrospina 

④ 2NO3
- + 4H+ + 4e- → 2NO2

- + 2H2O Nitrate reductase 

Pseudomonas, Thiobacillus, 

Paracoccus and Naisseria 

⑤ 2NO2
- + 4H+ + 2e- → 2NO + 2H2O Nitrite reductase 

⑥ 2NO + 2H+ + 2e- → N2O + H2O Nitric oxide reductase 

⑦ N2O + 2H+ + 2e- → N2 + H2O Nitrous oxide reductase 

Global equation of nitrification: 2NH4
+
 + 4O2 → 4H

+
 + 2H2O + 2NO3

-             

 
Eq. (1.1) 

Global equation of denitrification: 2NO3
-
 + 12H

+
 + 10e

-
 → N2 + 6H2O          

Eq. (1.2)  

The traditional BNR process has several disadvantages, including intensive oxygen 

demand for nitrification as well as the requirement of additional organic carbon sources 
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for denitrification. Therefore, it is uneconomical and complicated when applied to treat 

high nitrogen strength wastewater with low C/N ratio.  

Anammox bacteria were first discovered in a denitrifying pilot plant in 1995 by 

Mulder et al. (1995). During the anammox process, ammonium and nitrite are directly 

converted to N2 under strictly anoxic conditions. The growth of anammox bacteria is 

reversibly inhibited by oxygen concentrations even below 0.5% air saturation (Strous et 

al. 1997a). Anammox bacteria play an important role in the marine nitrogen cycle and 

have been detected in various oxygen minimum zones (OMZs) and man-made 

ecosystems (Dalsgaard et al. 2003, Galán et al. 2009, Hu et al. 2013a, Hu et al. 2012, 

Kuypers et al. 2003, Pitcher et al. 2011, Schmid et al. 2007, Schubert et al. 2006, 

Woebken et al. 2008). 

The elemental composition of protein of anammox bacteria was found to be 

CH2O0.5N0.15 when the laboratory-scale reactor was operating under the steady-state 

condition (Strous et al. 1998). The stoichiometry of the overall anammox metabolic 

reaction is described in Eq. (1.3). Anammox bacteria utilize CO2 as the sole carbon 

source and NO2
- 
as the electron acceptor for ammonium oxidation (Mulder et al. 1995, 

Schmid et al. 2001). Concurrently, NO2
- 
is used as the electron donor for CO2 reduction 

(Kuenen 2008). The exact anammox metabolism pathway is still unclear. Hydrazine 

(N2H4) and nitric oxide (NO) are identified as two metabolic intermediates of anammox 

process (Kartal et al. 2011, Strous et al. 2006). It has been proposed that anammox is a 

three-reaction process (Eq. (1.4), Eq. (1.5), and Eq. (1.6)) (Kartal et al. 2011, Strous et 

al. 2006). NO2
- 
is reduced by nitrite reductase (NirS) to NO, which subsequently reacts 
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with NH4
+
 to form N2H4, catalyzed by the unique hydrazine synthase (HZS), and finally 

N2H4 is oxidized to N2 by hydrazine dehydrogenase/oxidoreductase (HDH/HZO). 

4 2 3 2 3 2 0.5 0.15 21.32 0.066 0.13 1.02 0.256 0.066 2.03NH NO HCO H N NO CH O N H O          
 

Eq. (1.3)  

2 22NO H e NO H O    
                                                                          

Eq. (1.4) 

4 2 4 22 3NO NH H e N H H O     
                                                           

Eq. (1.5) 

2 4 2 4 4N H N H e  
                                                                                   

Eq. (1.6) 

1.3 Literature Review 

1.3.1 Anammox process 

The nitrogen removal has conventionally been achieved by the combined 

nitrification-denitrification process, which is energy-consuming and thus results in high 

operating cost. In addition, the traditional BNR process leads to high biomass production 

and GHG emissions, causing additional disposal costs and environmental issues.  

Anammox process has been recognized as an efficient and cost-effective alternative 

to the traditional BNR process because it reduces oxygen (60% less) and alkalinity 

demands for nitrification, and it does not need external organic carbon source for 

denitrification. It also offers additional advantages of reducing undesirable by-products 

such as GHGs (e.g., N2O, 90% less) and decreasing biomass yields (Jetten et al. 1997, 

Schmidt et al. 2003), resulting in significant savings in operational costs. Therefore, 

anammox process is also considered as an environmental friendly and sustainable 

process for nitrogen removal. 
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It is estimated that anammox bacteria account for approximately 50% of all N2 

released into the atmosphere (Kartal et al. 2012). They are a monophyletic group of 

anaerobic chemoautotrophic bacteria that branch deeply in the Planctomycetales tree 

(Strous et al. 1999). To date, ten different anammox species divided over five genera 

have been enriched and identified. They are Candidatus Kuenenia (K. stuttgartiensis), 

Brocadia (B. anammoxidans, B. fulgida, and B. sinica), Anammoxoglobus (A. 

propionicus), Jettenia (J. asiatica) and Scalindua (S. brodae, S. sorokinii, S. wagneri, 

and S. profunda) (Schmid et al. 2000, Schmid et al. 2003, Strous et al. 1999, Woebken et 

al. 2008). They all have the taxonomical status of ‘Candidatus’ since none of these 

genera have been isolated as pure cultures (majorly due to their slow specific growth 

rates). The common and unique characteristic of these anammox bacteria species is the 

presence of a specialized organelle called anammoxosome which is surrounded by a 

particular lipid that contains remarkable enzyme system (Lindsay et al. 2001).  

Anammox bacteria are strict anaerobes and autotrophs. As mentioned above, they 

grow in microbial mixtures and have not yet been isolated in pure culture (Tsushima et 

al. 2007a). Based on previous study, anammox bacteria are characterized with a slow 

growth rate and have a doubling time of approximately 11 days (Strous et al. 1998). 

Thus, the industrial application of anammox process has been partly impeded by the 

availability of anammox biomass for inoculation. Various methods have been applied to 

cultivate and enrich anammox biomass from different types of seed sludge, such as 

activated sludge (Dapena-Mora et al. 2004), nitrifying activated sludge (van der Star et 

al. 2007), and anaerobic sludge (Jetten et al. 2005). Reducing the washing out potential 
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of anammox biomass during the reactor operation is very important, especially at the 

start-up stage. Enrichment culture of anammox bacteria obtained from marine sediments 

has also successfully been achieved in a lab-scale reactor (van de Vossenberg et al. 

2008). 

Previous studies have observed population shifts of anammox bacteria during the 

operation of anammox reactors (Kartal et al. 2007, Park et al. 2010, van der Star et al. 

2007, van der Star et al. 2008a, van der Star et al. 2008b). For example, the population 

shifted from dominant ‘Candidatus Brocadia’ at the initial stage to ‘Candidatus 

Kuenenia’ under stable operating conditions in a membrane bioreactor (van der Star et 

al., 2008a; van der Star et al., 2008b). However, a population shifted from ‘Candidatus 

Kuenenia’ to ‘Candidatus Brocadia’ has also been observed during the long-term 

operation of a full-scale biofilm-based CANON (Completely Auto trophic Nitrogen 

removal Over Nitrite) reactor (Park et al. 2010, van der Star et al. 2007). The 

differences in physiological characteristics among anammox bacteria may contribute to 

the population shifts, such as substrate affinity constants and maximum growth rates 

(Oshiki et al. 2011).  

During the past decade, different types of reactors have been used to enrich 

anammox biomass, including completely stirred tank reactor (CSTR) (Guven et al. 

2004), sequencing batch reactor (SBR) (Strous et al. 1998), anammox non-woven 

membrane reactor (ANMR) (Ni et al. 2010c, Ni et al. 2010d), up-flow reactor (Imajo et 

al. 2004), fluidized bed reactors (Mulder et al. 1995, Strous et al. 1997b), fixed bed 

biofilm reactors (Kindaichi et al. 2007, Tsushima et al. 2007b), upflow anaerobic sludge 



www.manaraa.com

9 

 

9
 

blanket reactors (Ahn et al. 2004), membrane sequencing batch reactor (MSBR) (Trigo 

et al. 2006), rotating biological contactor (RBC) (Egli et al. 2001), gas-lift reactor 

(Sliekers et al. 2003), moving bed biofilm reactor (MBBR) (Winkler et al. 2012) and 

biofilm reactors (Gong et al. 2007, Tsushima et al. 2007b). Fast growth of anammox 

bacteria with a high enrichment of 97.6% has been achieved at a sludge residence time 

(SRT) of 12 days (van der Star et al. 2008a). Anammox process can achieve very high 

volumetric nitrogen removal rates up to 76 kg N/ (m
3
·day) (Tang et al. 2011), indicating 

its potential application for treating wastewater with high ammonium strength. 

Performance comparisons of different anammox reactors are summarized in Table 1.3. 

1.3.2 Autotrophic nitrogen removal process 

Complete anaerobic treatment of domestic wastewater has the potential to achieve 

net energy production while meeting stringent effluent standards (McCarty et al. 2011). 

Since the discovery of anammox bacteria in the early 1990s, researchers have been 

developing more sustainable domestic wastewater treatment technologies by coupling 

with anammox process.  

Generally, ammonium is a dominant form of nitrogen compound in most 

wastewater. In order to apply anammox process, part of ammonium is required to be 

oxidized to nitrite, and then the produced nitrite together with the remaining 

ammonium is converted to N2 by anammox bacteria. Anaerobic digester followed by 

nitrification-anammox process can be practical and has become a promising technology. 

The first step is converting organic carbonaceous compounds to CH4 in the anaerobic 
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digester. Then the remaining wastewater containing majorly ammonium leftover can be 

removed by nitritation-anammox process (Hu et al. 2013c).  

The combined nitritation–anammox process can be achieved either in two separate 

reactors as the SHARON (Single reactor system for High-rate Ammonium Removal 

Over Nitrite)–anammox process (Hellinga et al. 1998, van Dongen et al. 2001), or in a 

single reactor such as OLAND (Oxygen-Limited Autotrophic Nitrification–

Denitrification) (Meulenberg et al. 1992), CANON process (Cho et al. 2011, Sliekers et 

al. 2003, Third et al. 2001), SNAP (Single-stage Nitrogen removal using Anammox and 

Partial nitritation) (Furukawa et al. 2006), and DEMON (the pH-controlled 

DEamMONification system) (Wett 2007). They are considered as the two-stage or one-

stage systems, respectively. The choice of which configuration is preferable depends 

on the specific case, including wastewater characteristics, the existing constructions, 

space availability, etc. Generally, one-stage process has a lower capital cost than two-

stage system because of no additional reactor requirement. But high nitrite level might 

be toxic to the responsible microorganisms. Two-stage system instead can be more 

effective, flexible and stable than one-stage process since nitritation and anammox 

processes can be controlled and optimized separately (Hu et al. 2013b). For instance, 

the inhibitory effect of O2 on the anammox bacteria can be relieved.  

Besides these systems, new and innovative processes have continued to be 

developed. For instance, Mulder (2007) proposed DEAMOX (DEnitrifying AMmonium 

OXidation) which combines anammox process with autotrophic denitrification process 

using sulphide as an electron donor for converting nitrate to nitrite within an anaerobic 
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biofilm. A novel non-woven rotating biological contactor (NRBC) reactor has been 

applied to study SNAD (Simultaneous Partial nitrification, Anammox and 

Denitrification) process that is able to remove ammonium and COD in a single reactor 

(Chen et al. 2009).The SNAD process has also been investigated in a full-scale landfill-

leachate treatment plant in Taiwan (Wang et al. 2010). Recently, ANME-D (ANaerobic 

MEthane oxidation coupled to Denitrification) with nitrite as an electron acceptor has 

been recognized as important pathways in the microbial nitrogen cycle (Ettwig et al. 

2010, Zhu et al. 2010). The possible coexistence of anammox and nitrite-dependent 

anaerobic methane oxidation bacteria (n-damo, or denitrifying methanotrophic bacteria) 

may allow their application to wastewater containing substantial amounts of both 

dissolved methane and ammonium (Luesken et al. 2011).  

The partial nitrification–anammox process has been successfully applied to treat 

sewage sludge digester liquor (van Dongen et al. 2001) and livestock manure digester 

liquor (Yamamoto et al. 2008, Yamamoto et al. 2011). The first full-scale granular 

anammox reactor in the world was implemented in 2007 at the WWTP of Waterboard 

Hollandse Delta in Rotterdam, Netherland (Abma et al. 2007). The up-flow anammox 

reactor was coupled with a SHARON reactor which provides the mixture of ammonium 

and nitrite (ratio is about 1:1) (van der Star et al. 2007). The full-scale application of 

deammonification was successfully achieved in Austria in the DEMON reactor, the 

sludge in which contains the mixture of red granules and brownish flocs (Innerebner 

et al. 2007, Wett 2006).  
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The reaction equations involved in these innovative BNR processes are shown in 

Table 1.2. 

Table 1.2. Summary of innovative BNR processes. 
Process Reaction equation 

SHARON-Anammox 

Nitritation: 
4 2 3 4 2 2 22 1.5 2 2 3NH O HCO NH NO CO H O          

Anammox: 
4 2 2 22NH NO N H O     

Total: 
4 2 3 2 2 22 1.5 2 2 5NH O HCO N CO H O       

CANON 4 2 3 2 20.85 0.13 0.435 1.4 1.3NH O NO N H H O        

OLAND 4 2 2 22 1.5 2 3NH O N H H O      

n-damo 4 2 2 2 23 8 8 3 4 10CH NO H CO N H O       

DEAMOX 
2

3 2 40.25 0.25 0.25NO HS NO SO H         

 

To date, various factors have been evaluated to achieve stable partial nitrification, 

such as pH (Ciudad et al. 2007, Furukawa et al. 2006, Hellinga et al. 1998, Law et al. 

2011), temperature (Guo et al. 2010, Hao et al. 2002, Hellinga et al. 1998, Peng et al. 2007, 

Qiao et al. 2010), dissolved oxygen (DO) (Blackburne et al. 2008, Chuang et al. 2007, 

Guo et al. 2009), free ammonia  (Peng et al. 2004, Vadivelu et al. 2007, Vadivelu et 

al. 2006), free nitrite (Qiao et al. 2010, Yamamoto et al. 2011) and hydroxylamine 

(Kindaichi et al. 2004, Schmidt et al. 2004, van der Star et al. 2008b).  

Performance comparisons of different autotrophic nitrogen removal in single-stage 

reactors are summarized in Table 1.4. 
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Table 1.3. Performance comparisons of different anammox reactors.  

Reactor 

type 
Inoculum 

Operation 

time 
T pH 

Substrate concentration 

     NH4
+               NO2

- 
HRT 

Nitrogen 

removal 

efficiency 

 

NLRmax 

 

NRRmax References 

Day oC  mg/L h % 
kg 

N/m3/d 

kg 

N/m3/d 
 

GLR Anammox sludge 86-100 - 7.5 1545±62 - 10 42 3.7 1.5 Sliekers et al. (2003) 

UASB Anammox granules 235 37 7.5-8 100-458 100-575 <24 99.29 1.03 0.93 Ni et al. (2011) 

ABF Anammox sludge 97 37 7.2 93.3-350 40.6-330.7 0.67-3 - 19.1 11.5 Isaka et al. (2007) 

ABF Anammox sludge 446 20-22 7.2 93.3-350 40.6-330.7 0.67-3 - ~12 8.1 Isaka et al. (2007) 

UFFBB Denitrifying sludge 247 37 7-7.5 20-550 20-460 0.2-8 50-63 58.5 26 Tsushima et al. (2007b) 

UAGSB Anaerobic granular 324-330 35±1 - 70-400 70-500 1.01-10.1 - 16.4 15.4 Tang et al. (2009) 

SBR Activated sludge 365 36 ± 0.3 7.2–8.7 1268 1661.4 46-86 96–99.5 1.6 1.57 Lopez et al. (2008) 

SBR Anammox sludge 400 30 7.5–8.3 700 0 - 60 0.28 1.0 Vazquez-Padin et al. (2009a) 

SBR Anammox sludge 400 18–24 7.7 ± 0.2 200-250 0 - 77 - 0.36 avg. Vazquez-Padin et al. (2009b) 

SBR Anammox granules 218 30 7.8 150 150 24 98 0.3 - Arrojo et al. (2006) 

SBR Anammox sludge 329 33 7.8 30-300 30-300 24 99-100 0.6 -       Fernández et al. (2008) 

MSBR Anammox sludge 375 35 8 390 390 24 <80 - 0.71 Trigo et al. (2006) 

CTR Anammox sludge 340 25 - 300 300 3.9-24.3 81.3 3.6 - Qiao et al. (2009) 

UASB Anaerobic granules 400 30 7.5 709-1027 927.8-1409  86.5-92.3 - 2.28-6.39 Imajo et al. (2004) 

UASB Aerobic granules 300 30 - 200 220 30-24 90 0.5 - Vazquez-Padin et al. (2009a) 

ANMR Anammox sludge 260 35 7.5-8 - - 24-60 - 1.26 1.05 Ni et al. (2010c) 

 

NLR, nitrogen loading rate; NRR, nitrogen removal rate. 

GLR, gas-lift reactor; UAGSB, upflow anammox granular sludge bed; UFFBB, up-flow fixed-bed biofilm reactor; UASB, 

upflow anaerobic sludge blanket; SBR, sequencing batch reactor; ABF, anaerobic biological filter; MSBR, membrane 

sequencing batch reactor; CTR, column type reactor; ANMR, anammox non-woven membrane reactor. 
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Table 1.4. Performance comparisons of completely autotrophic nitrogen removal in single-stage reactors. 

Reactor 

type 
Inoculum 

HRT Temp. pH 

Ammonium 

concentration 

in influent 

N removal 

efficiency 

 

NLR 

 

NRR References 

h oC  mg/L % kg N/m3/d kg N/m3/d  

SBR Anammox+AOB 24 30  - 36-92 0.07-0.22 0.04-0.11 Third et al. (2001) 

SBR Anammox 24 30 7.5 131 42  0.064-0.315 Sliekers et al. (2002) 

SBR Nitrifying+Anammox 12 21 7.7 
180-330 

200-250 
78  0.36 Vazquez-Padin et al. (2009b) 

MABR Nitrifying+Anammox - 35 7.6 200 84 0.87 0.72 Gong et al. (2008) 

RBC OLAND sludge 24 30-35 7-8 840 89±5 0.675-1.189  Pynaert et al. (2003) 

RBC OLAND sludge 32±2 26 7.9 1215 ± 54 76  0.7, max 1.3 Vlaeminck et al. (2009) 

NRBC 
Anammox+partial 

nitrifying 
5-6 35 8-8.2 200 70 0.69 - Chen et al. (2009) 

Up-flow 
Anaerobic granules and 

anoxic activated sludge 
120 30  438±26 56.7  0.07 Ahn and Choi (2006) 

Up-flow Nitrifying 5 37 7.83 130-300 22.1±0.16  
0.23±0.16 

max. 0.57 
Cho et al. (2011) 

Up-flow Anammox 3-5 37 7.6 206±28 16.6±8.9  
0.35±0.19 

max. 0.77 
Cho et al. (2011) 

 

OLAND sludge, aerobic nitrifiers + heterotrophic denitrifiers+ anammox biomass. 

MABR, membrane aerated biofilm reactor. 

RBC, rotation biological contactor. 

NRBC, non-woven RBC. 
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DO concentration is critical for controlling the growth rates of both AOB and NOB 

during the nitrification process. However, anammox bacteria are strict anaerobes and 

reversibly inhibited by certain oxygen levels. But AOB and anammox activities could 

occur under oxygen-limiting conditions (Meulenberg et al. 1992, Third et al. 2001).  

Additional  low concentrations of hydroxylamine (NH2OH, 250 µM) have been 

shown to completely inhibit the NOB growth for more than 40 days (Kindaichi et al. 

2004). The free ammonia (NH3) concentration depends on the ammonium 

concentration, pH and temperature (Anthonisen et al. 1976). NH3 has an inhibitory effect 

on nitrite oxidoreductase, locating on the cell membrane of NOB.  

Previous studies reported anammox bacteria have an optimal pH and temperature of 

7.5-8.0, 30-40 °C, respectively (Strous et al. 1997b, Van de Graaf et al. 1996). Jetten et 

al. (2001) also pointed out that the optimum temperature for anammox bacteria growth 

was around 30 to 35°C. In addition, the AOB had an optimal temperature of about 28°C 

(Alawi et al. 2007). The maximum specific growth rate of Nitrosomonas (AOB) 

surpasses that of Nitrobactor (NOB) at 35 °C (van Dongen et al. 2001). Temperatures 

higher than 30 °C and pH between 7.8-8.5 have been applied to suppress NOB activities 

and promote AOB growth (Bae et al. 2001, Hellinga et al. 1998). Mulder et al. (2001) 

have also reported that temperatures ranging between 30-40 °C were most suitable for 

partial nitrification. On the other hand, some studies suggested that NOB had higher 

activities than AOB at the temperature range of 10 to 15 °C (Yang et al. 2007).  

Consider that AOB and anammox bacteria tend to grow well at higher temperatures; 

NOB could consume the limiting O2 and nitrite ahead of AOB and anammox bacteria 
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under low temperature (depending on their affinities for nitrite and O2). As a result, this 

would lead to nitrate accumulations and even the deterioration of the system, causing 

violation of discharge criteria. On the other hand, AOB and anammox bacteria have 

abilities to thrive at the temperature below 10°C in natural ecosystems (e.g. OMZs), 

indicating that both groups of microorganisms are capable to outcompete NOB at low 

temperatures. 

1.4 Objective of the Research 

I intended to develop a more sustainable BNR technology so called nitritation-

anammox process to meet the increasingly stringent nutrient discharge standards. One of 

the biggest obstacles of the combined process has been the slow growth rates of the 

functional microorganisms. UASB reactors with very efficient biomass retention can 

overcome this obstacle to a certain extent. In the study, two laboratory-scale UASB 

reactors have been developed and operated over long periods.  

Based on the previous studies, many anammox reactors did not follow the proposed 

anammox reaction equation. One reason is that none of anammox species have been 

obtained as pure cultures. The bacteria composition can be various in different reactors. 

Thus, experimentally verification of substrate conversion will be studied in UASB #1 

reactor. The optimal influent ratio of nitrite to ammonium for anammox process will be 

determined in the first step. Then the long-term performance of the reactor will be 

evaluated by applying the optimal influent ratio. As a result, an empirical reaction 

equation is expected to generate based on mass balance.  
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ORP is a more sensitive parameter for process control compared to pH or DO. 

Substrates consumptions and the shifts of aerobic/anoxic/anaerobic environments can be 

readily detectable by on-line ORP. To my best knowledge, the application of ORP as a 

monitoring or controlling parameter for developing and operating the combined 

nitritation-anammox process in a UASB reactor has not yet been investigated. The 

strategy used to develop the nitritation-anammox process was to fix ammonium 

concentration but gradually reduce nitrite concentration in the influent. Correspondingly, 

the influent ratio of NO2
-
-N/NH4

+
-N decreased from 1.2 to 0. The amounts of oxygen 

supply were controlled and adjusted by gas flow meter according to the results of on-line 

ORP and DO probes. 

1.5 Thesis Organization 

The thesis will be divided into three parts. Part I will provide significance and 

motivation of this research, background information and research progress. Part II will 

introduce the reactor setup and operation, as well as testing methods. Part III will 

describe (1) the optimization and application of the influent ratio of NO2
-
-N/NH4

+
-N to 

evaluate the substrates conversion and long-term performances in UASB #1 reactor, (2) 

the development of the combined nitritation-anammox process in UASB #2 reactor 

under low oxygen conditions using ORP and DO probes as combined monitoring 

tools, (3) the characteristics of granules in both UASB reactors, (4) the microbial 

community composition analysis of granules by FISH technique in UASB #2. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Synthetic Medium 

Synthetic wastewater, made according to Table 2.1 (Imajo et al. 2004), was used 

throughout the experiments. Ammonia and nitrite were supplemented to mineral medium 

as needed in the forms of (NH4)2SO4 and NaNO2, respectively. The amount of ammonia 

and nitrite is based on experimental design. The trace elements solution I contains (g/L): 

EDTA 5 and FeSO4 5. The trace elements solution II is composed of (g/L): EDTA-2Na 

15, CuSO4•5H2O 0.25, ZnSO4•7H2O 0.43, NaMoO4•2H2O 0.22, MnCl2•4H2O 0.99, 

NiCl2•6H2O 0.19, CoCl2•6H2O 0.24, NaSeO4•10H2O 0.21 and H3BO4 0.014 (Imajo et al. 

2004). The pH of the influent was around 7.3-7.5. In order to maintain a controlled DO 

level in the reactor, the synthetic wastewater was deoxygenated by flushing with N2, and 

stored in a gas tight collapsible low density polyethylene (LDPE) container.  

Table 2.1. Composition of the synthetic wastewater. 
Chemicals g/L g/mol mol mM 

(NH4)2SO4 Various 

NaNO2 Various 

NaHCO3 0.420 83.9 0.1 5 

KH2PO4 0.027 136 0.004 0.2 

MgSO4 0.059 120 0.010 0.488 

CaCl2.2H2O 0.18 147 0.024 1.224 

EDTA 0.005 
   

FeSO4 0.009 
   

Trace elements solution I 

Trace elements solution II 

1 mL 

1 mL    

 

2.2 Reactor Setup and Operation 

Previous studies have shown that UASB reactor is very suitable for the cultivation, 

enrichment and study of very slowly-growing anammox bacteria. Two laboratory-scale 

UASB reactors with working volume of 5 L (height 1.10 m, diameter 0.10 m) have been 
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used for the cultivation of anammox bacteria (UASB #1) and nitritation-anammox 

biomass (UASB #2), respectively.  

2.2.1 UASB #1 reactor 

The inactive methanogenic granules and anammox granules were inoculated to start 

up UASB #1 (Meng 2012). It has been steadily operated for more than three years. 

Previous studies have proved that the inactive methanogenic granules were suitable for 

rapid anammox granulation at high nitrogen concentrations (Ni et al. 2010b).  

The configuration of UASB reactors is shown in Figure 2.1. The reactor was fitted 

with an influent port (also used for effluent recirculation and oxygen delivery) at the 

bottom, an effluent and a recirculation ports on the top, as well as two ports for sampling 

water and biomass located in the middle part. To maintain suitable temperature (35±1 

˚C) for anammox bacteria growth, the warm water from a thermostat water bath was 

recirculated into the integrated water jacket. The glass funnel on top functioned as a 

three-phase separator, collecting gas produced from the reactor, allowing liquid to flow 

out while preventing biomass run-off. Gravels with different sizes (approximately 2, 5, 

and 10 mm) were placed at the bottom part of the reactor to achieve better biomass 

retention and water/gas distribution.  

The reactor was continuously fed with synthetic wastewater by a peristaltic pump 

(MasterFlex, Cole-Parmer Instrument, Vernon Hills, IL, USA). The treated water was 

recycled back to the influent port to create proper upflow velocity. The recirculation can 

dilute the influent to avoid inhibition effect of high nitrite strength, keep the biomass in 

suspension, as well as facilitate substrates transport. All tubes and connectors were made 
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of black butyl rubber or polyvinylchloride (PVC) to prevent light transmission and air 

permeability. The off-gas collected from the reactor was measured by a connected gas 

meter.  

 

Figure 2.1. Schematic diagram of experimental setup 

The reactor was continuously fed with synthetic wastewater at various nitrogen 

loading rates. The hydraulic retention time (HRT) was set at 1 ± 0.1 days for UASB #1.  

The pH inside the reactor was monitored by pH online probe coupled with a pH 

controller (pH 2000, New Brunswick Science, Edison, NJ, USA). The pH was adjusted 

and maintained at 7.6-7.8 automatically by feeding of 0.1 M hydrochloric acid (HCl) 

during the experimental period.  

Gas meter

pH/ORP controller

HCl or NaOH

Recirculation pump

Gas-tight

container for

storing synthetic

wastewater

Temperature-controlled

water bath

Feeding pump

Pure oxygen supply (only for UASB #2 reactor)

DO probe (only for

UASB #2)

pH probe

ORP probe

(only for UASB #2)

DO controller

Gas drying unit
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2.2.2 UASB #2 reactor 

Approximately 1.5 L of inactive methanogenic granules, 300 mL of anammox 

granules from UASB #1 (70 to 80% enriched) and subsequently 200 mL of aerobic 

activated sludge from a local municipal WWTP were used as seed sludge to inoculate 

UASB #2 to enrich nitritation-anammox biomass.  

The UASB #2 reactor has a similar configuration with UASB #1 (Figure 2.1). The 

only different is that oxygen was gradually supplied in UASB #2 to stimulate the growth 

of AOB. Pure oxygen gas was delivered from gas cylinder. DO dosage was controlled 

via needle valve and gas flow meter. The online pH/ORP control system (MC125, 

Milwaukee Instruments, Inc., Rocky Mount, NC, USA) and online DO controller (HI 

8410, Hanna Instruments Inc., Woonsocket, RI, USA) were connected to the reactor. 

The HRT was set as 36 h, and the temperature of the reactor was maintained at 35°C 

through recirculation from a water bath. Since the bicarbonate in the mineral 

medium was insufficient to buffer the liquid in the reactor, HCl and NaOH were 

added when necessary to maintain a pH between the range of 7-8.  

2.3 Analytical Methods 

To monitor the performance of the reactor, concentrations of ammonium (NH4
+
-N), 

nitrite (NO2
-
-N) and nitrate (NO3

-
-N) in the effluent were regularly measured throughout 

the experiment. Ammonium concentration was measured by the standard ammonia ion 

selective electrode (Thermo Fisher Scientific Inc., Beverly, MA, USA) according to 

Standard Methods (APHA 1998). Nitrite and nitrate concentrations were determined by 

spectrophotometer (DR 3900, Hach Company, Loveland, CO, USA). Concentration of 
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free ammonia was calculated as a function of pH, temperature and total NH4
+
-N as 

described previously (Anthonisen et al. 1976). Mixed liquor suspended solids (MLSS) 

and mixed liquor volatile suspended solids (MLVSS) were determined according to the 

standard methods (APHA 1998). 

Elemental analysis of the biomass was performed using a CHNS analyzer (Vario 

Micro cube, Elementar Analysensysteme GmbH, Hanau, Germany). Proximate analysis 

was carried out using a thermogravimetric analyzer (TGA/DSC1, Mettler Toledo, 

Columbus, OH, USA) according to ASTM D5142 methods. Oxygen content was 

calculated by difference based on mass balance. 

2.4 Fluorescence in situ Hybridization (FISH) 

Spatial distribution of microorganisms in the granule was analyzed using FISH 

technology. FISH is a cytogenetic technique used to identify the presence of certain 

DNA sequences on chromosomes. FISH analysis was carried out as described previously 

(Kindaichi et al. 2006, Okabe et al. 1999, Tsushima et al. 2007a). During hybridization 

process, specific fluorescence probes bind to a particular region of a chromosome with 

special sequence. Matching bacteria can be observed under fluorescence microscopy, 

providing information on the compositions of microbial community in the granules.   

Several 16S rRNA targeted-oligonucleotide probes (Sigma-Aldrich, St. Louis, MO, 

USA) used in this study and their hybridization conditions are listed in Table 2.2. 

Synthesis scale is 0.5 µmol, and formamide (FA) concentration in the hybridization 

buffer depends on the probe types. The probes were labeled with fluorescein 

isothiocyanate (FITC) or Texas RedTM (TXRD) at the 5’ end. EUB388 probe was used 
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to identify all bacteria (Amann et al. 1990). Amx820 probe (5’-

AAAACCCCTCTACTTAGTGCCC-3’) with TXRD label hybridizes specifically with 

Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis (Schmid 

et al. 2001). FLC labeled NSE1472 and NSV443 probes were used to identify AOB, 

such as Nitrosomonas europaea and Nitrosospira spp., respectively (Mobarry et al. 

1996). TxRd-labeled NIT3 probe (5’-CCTGTGCTCCATGCTCCG-3’) is specific to 

Nitrobacter spp.  

Table 2.2. List of 16S rRNA-targeted oligonucleotide probes used in this study. 
Probe Sequence (5’  to 3’ ) FA (%) 5’ Mod Specificity References 

EUB338 GCTGCCTCCCGTAGGAGT 35 Flc Most bacteria Amann et al. (1990) 

Amx820 AAAACCCCTCTACTTAGTGCCC 35 TxRd 

Cand. ‘‘Brocadia 

anammoxidans” 
Schmid et al. (2001) 

Cand. ‘‘Kuenenia 

stuttgartiensis” 

NSE1472 

NSV443 

ACCCCAGTCATGACCCCC 

CCGTGACCGTTTCGTTCCG 

50 

30 

Flc 

Flc 

Nitrosomonsa europea 

Nitrosospira spp. 

Mobarry et al. (1996) 

Mobarry et al. (1996) 

NIT3 CCTGTGCTCCATGCTCCG 40 TxRd Nitrobacter spp. Wagner et al. (1996) 

ACI208 GTGCTCCCCCGCCAATTCCT 20 Flc Acidovorax spp. Raskin et al. (1994) 

 

In general, there are three steps for FISH experiment: sample fixation, 

cryosectioning, and hybridization. Fresh granules were obtained from reactors and fixed 

in 4% paraformaldehyde solution (with buffer) at 4˚C for 3-4 hours. Cryostat microtome 

was used to rapidly freeze sample with Tissue-Tek® OCT (OCT stands for optimal 

cutting temperature) compound at -22˚C. Sections with16-20 µm thin were obtained by 

cryostat sectioning. Phosphate-buffered saline (1x PBS) was used to wash the sample 

slice. Then air dried slides were dehydrated with ethanol series 50%, 80% and 90%. 

Samples were hybridized with with 9 µL of hybridization buffers and 1 µL of probes (

50 /ng L ) at 40 °C for 1-1.5 hours. The hybridization stringency was adjusted by 
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adding different amount of formamide to the hybridization buffer according to the probe 

types. After hybridization, the slides were washed at 48°C for 5 min in washing buffer 

and then washed by distilled water. Finally, slides were air-dried and mounted with an 

anti-fading media (Fluoromount, Electron Microscopy Sciences, USA) under coverslips 

for microscopy observation. FICT and TRITC filters were used to obtain images of 

hybridized bacteria in this study. 
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CHAPTER 3. RESULTS AND DISUSSION 

3.1 Experimental Verification of Substrates Conversion  in UASB #1 Reactor 

The UASB #1 reactor has been operating for more than two years in the lab before 

the work presented here was performed. By inoculating a small amount of anammox 

biomass and strictly controlling growth conditions, the inactive methanogenic granules 

can be slowly converted into red anammox granules, which play a key role in the 

stability and efficiency of anammox reactor. The anammox granules are dark red and 

have irregular spheres, with an average diameter of approximately 3.8 mm.  

As shown in Eq. (1.3), the proposed stoichiometric ratio of the ammonium 

conversion, nitrite consumption, and nitrate production is 1: 1.32: 0.256 (Strous et al. 

1998). Since anammox granules have been highly enriched in UASB #1 reactor, a series 

of experiments were designed to verify the conversion ratio. The ratio of influent NO2
-
-

N/NH4
+
-N was optimized and the optimal ratio was applied throughout the experiments 

to evaluate long-term reactor performance. 

3.1.1 Determination of the optimal ratio of influent NO2
-
-N/NH4

+
-N  

The optimal influent NO2
-
-N/NH4

+
-N ratio was determined with NH4

+
-N fixed at 420 

mg N/L (30 mM) and 490 mg/L (35 mM) (Table A.1). For the two sets of NH4
+
-N 

concentrations, the influent NO2
-
-N/NH4

+
-N ratios were controlled at 1.31, 1.2, and 1.1, 

1.31, 1.2, 1.1 and 1, respectively to study the reactor performances.  

The effluent concentrations of ammonium, nitrite and nitrate are shown in Figure 

3.1. Similar trends were observed for the two sets of experiments. Higher influent NO2
-
-

N/NH4
+
-N ratios (1.2 and 1.31) resulted in very low effluent ammonium concentrations. 
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For instance, the average effluent ammonium concentrations were 0.77 mg N/L and 0.92 

mg N/L when feeding 420 mg N/L and 490 mg N/L ammonium, respectively. In 

comparison, with lower influent NO2
-
-N/NH4

+
-N (1 and 1.1), higher effluent ammonium 

concentrations (e.g. average of 36±10 mg N/L when ratio was 1) were observed possibly 

because of insufficient nitrite for anammox bacteria. On the other hand, nitrite 

accumulation occurred when influent ratio was 1.31. For Set II experiment, nitrate 

concentration showed a positive correlation with influent ratio (Figure 3.1B). In general, 

1.2 should be considered as the optimal influent ratio of NO2
-
-N/NH4

+
-N, since it yields 

the highest TN removal rate (on average 96%-97%).  

The observed NO2
-
-N/NH4

+
-N ratio and observed NO2

-
-N/NH4

+
-N ratio were 

illustrated in Figure 3.2. The definition of these ratios is described in Eq. (3.1).  
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Eq. (3.1)  

Surprisingly, the observed NO2
-
-N/NH4

+
-N ratios were in accordance with the 

influent NO2
-
-N/NH4

+
-N ratios. For instance, the observed NO2

-
-N/NH4

+
-N ratios were 

1.08 and 1.13 (Figure 3.2B), slightly off the influent ratios of 1 and 1.1, respectively. 

The reason was that nitrite was almost completely removed but some ammonium was 

accumulated in the effluent. However, the observed NO2
-
-N/NH4

+
-N ratios were 1.2 and 
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1.3 (Figure 3.2B), which were very close to the influent ratios of 1.2 and 1.31, 

respectively. The similar tendency should be explained from different ways. Under 

influent ratio of 1.2, there were no ammonium and nitrite accumulations while both 

ammonium and nitrite accumulations occurred under the influent ratio of 1.3. The 

observed NO2
-
-N/NH4

+
-N ratios were not exactly the same as proposed ratio of 1.32, 

possibly due to the activities of other microorganisms. For example, Meng (2012) has 

found that AOB can still survive in the strictly oxygen-limited anammox system.  

The observed NO3
-
-N/NH4

+
-N ratios were also much lower than the proposed ratio 

of 0.256, possibly causing by the activities of denitrifiers. Researchers have studied the 

co-existence of anammox and denitrification, which can refer to a review published by 

Kumar and Lin (2010).  
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Figure 3.1. Effluent profiles under different influent NO2
-
-N/NH4

+
-N ratios.  

(A) 30 mM of influent NH4
+
-N. (B) 35 mM of influent NH4

+
-N 
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Figure 3.2. The observed NO2

-
-N/NH4

+
-N ratio and observed NO3

-
-N/NH4

+
-N ratio 

under different ratios of influent NO2
-
-N/NH4

+
-N.  

(A) 30 mM of influent NH4
+
-N. (B) 35 mM of influent NH4

+
-N. 
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N loads used were 30 mM (420 mg/L, scenario I) and 35 mM (490 mg/L, scenario II), 

respectively. The optimal influent NO2
-
-N/NH4

+
-N ratio of 1.2 was used, resulting in 

NO2
-
-N loads of 504 mg/L and 588 mg/L, respectively.  

The effluent profiles and TN removal efficiency were shown in Figure 3.3. The 

performance of the anammox reactor showed a high stability. Ammonium and nitrite 

removal efficiencies were extremely high (both were more than 99%) for both scenarios. 

Growth of the anammox bacteria is associated with nitrate production, because part 

of the nitrite is oxidized to nitrate which serves as the terminal electron donors for cell 

carbon fixation (Hu et al. 2013c). It has been reported that anammox bacteria exhibited 

tolerance to nitrite up to 13 mM  (195 mg N/L) (Egli et al. 2001). However, much higher 

concentrations of NO2
-
 (up to 690 mg N/L) have been applied to  a full-scale anammox 

granular reactor (Abma et al. 2007). A series of batch experiments were conducted with 

various initial NO2
-
 concentrations to investigate effects of the NO2

- 
concentration on 

anammox activity (Cho et al. 2010). Their results indicated that anammox granules 

tolerated higher NO2
-
 concentration as compared with the homogenized biomass, 

probably because of the lower NO2
-
 concentration inside the granule due to substrate 

diffusion limitation (Cho et al. 2010). For Scenarios I and II in UASB #1 reactor, the 

influent NO2
-
-N concentrations were as high as 504 mg/L and 588 mg/L, respectively, 

but the mean effluent NO2
-
-N concentrations were 1.8 mg/L and 0.26 mg/L, 

respectively, even sometimes below the detection limit. Thus, the inhibition effect by 

high concentration of NO2
-
 depends on biomass characteristics and operational 

conditions as well as reactor types.  
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Figure 3.3. Reactor performances under steady state operating conditions.  

(A) 30 mM of influent NH4
+
-N. (B) 35 mM of influent NH4

+
-N. 
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(i.e. 2.6±1.1% of TN load), respectively. Interestingly, the higher TN load rate produced 

less amount of nitrate. For instance, the mean TN removal efficiency of Scenario II was 

97.3%, which was 3% higher than that of Scenario I. 

To compare with the stoichiometry of the anammox reaction Eq. (1.3), nitrogen 

balances were performed in UASB #1 reactor. As shown in Figure 3.4, the mean ratio of 

observed NO2
-
-N/NH4

+
-N for both scenarios was about 1.20, very close the ratio of NO2

-

-N/NH4
+
-N in the influent. Though it is not in good agreement with proposed ratio, 

similar ratio has been reported by Ni et al. (2010a).  However, the mean ratios of 

observed NO3
-
-N/NH4

+
-N for scenarios I and II were 0.12 and 0.06, respectively, which 

are much lower than proposed ratio of 0.256 as well as that of 0.22 reported by Ni et al. 

(2010a). Meng (2012) reported the ratio of consumed NH4
+
-N: consumed NO2

-
-N: 

produced NO3
-
-N of 1:1.21:0.19 at steady state using the same reactor. In contrast, the 

stoichiometric ratio of the ammonium conversion, nitrite removal, and nitrate production 

was calculated as 1:1.26:0.44 (Xiong et al. 2013). The nitrate production was much 

higher than that in this study.  

Based on the substrates conversion and mass balance, an empirical reaction equation 

was proposed for UASB #1 reactor without considering cell synthesis (Eq. (3.2)). 

Compared to Scenario II, the substrate conversion in Scenario I was in very good 

agreement with the proposed equation. The concentrations of produced nitrate in 

Scenario II were much lower than expected based on the equation. 

4 2 2 3 21.2 0.08 1.04 0.12 2.04NH NO H N NO H O          

Eq. (3.2) 
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Figure 3.4. The observed NO2
-
-N/NH4

+
-N ratio and observed NO3

-
-N/NH4

+
-N ratio 

under steady state operating conditions 

(A) 30 mM of influent NH4
+
-N. (B) 35 mM of influent NH4

+
-N. 

3.1.3 Characteristics of the anammox granules 

Hydrodynamic shear force in UASB reactors mainly results from upflow velocity 

and gas production (Liu and Tay 2002). Anaerobic granulation proceeded well at 

relatively high liquid upflow velocity (Arne Alphenaar et al. 1993), while upset 

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
ti
o

Observed NO
2

-
-N/NH

4

+
-N

Observed NO
3

-
-N/NH

4

+
-N 

Influent ratio=1.2

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Observed NO
2

-
-N/NH

4

+
-N

Observed NO
3

-
-N/NH

4

+
-N 

R
a
ti
o

Time (d)

Influent ratio=1.2

(A) 

(B) 



www.manaraa.com

34 

 

3
4

 

granulation processes at weak shear force have been reported (Alves et al. 2000, 

O'Flaherty et al. 1997). The selection pressure theory has been used to explain the effects 

of upflow velocity on anaerobic granulation process (Hulshoff Pol et al. 1988). The 

selection pressure includes temperature, HRT, upflow velocity, substrate loading rate, 

pH, reactor configuration, seed sludge, etc. A relatively high liquid upflow velocity 

could cause washout of dispersed bacteria and those bacteria competent for aggregation 

would be kept in the reactor (Liu and Tay 2002). 

The anammox granules play an important role in the high nitrogen removal 

performance of anammox reactor. The mature anammox granules had diameters 

typically between 1.0 and 7.0 mm (Figure B.1), with the majority (approximately 74%) 

having a diameter of 2.1 to 5 mm (Figure 3.5). Their porous structure can facilitate the 

diffusion of substrates as well as the release of N2. The concentrations of MLSS and 

MLVSS of the sludge bed were 33.1 g/L and 27.6 g/L, respectively. 

 

Figure 3.5. Particle size distribution of the anammox granules by number. 
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The mature anammox granules settled very well at velocities ranging from 57 to 154 

m/h (on average 104 m/h) , which were higher than those of the methanogenic granules 

and aerobic granules (e.g., 52 m/h and 86.4 m/h) (Blaszczyk et al. 1994, Shin et al. 

1992). Also, the settling ability of anammox granules is much better than that of the 

flocculated anammox biomass. Such high settling velocities indicated that the anammox 

granules have a highly dense and compact structure, which benefits biomass retention in 

the reactor and improves effluent quality. 

The upflow velocity is a very important parameter for successful operation of UASB 

reactor. The formation of anaerobic granules can be enhanced through a purely physical 

aggregation, e.g., the hydrodynamic stress by increasing the liquid upflow velocity (Liu 

and Tay 2002). It has been suggested that an upflow velocity of 0.6 to 0.9 m/h must be 

maintained to keep the sludge blanket in suspension. In addition, settling velocity was 

significantly improved as the upflow velocity increased, resulting in a reduction of 

biomass washout rate from 46% to 2% (Liu and Tay 2002). A suitable velocity of 1.2-

1.5 m/h was employed in anammox reactor not only to keep the granules in suspension 

but also to prevent biomass washout.  

The element compositions of the dry anammox granules were shown in Table 3.1. 

The molecular formulas of anammox granules from the reactor were different from the 

previously reported formulas 2 0.5 0.15 0.05CH O N S  (Strous et al. 1998) and 5 13.3 3.3C H O N (i.e. 

1.8 0.5 0.2CH O N ) for anammox sludge (Hao 2001), possibly due to the different microbial 

community compositions. Elser et al. (2000) also hypothesized that the variation in cell 
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elemental composition may reflect the species interactions developed in the systems 

under different conditions.  

It has been reported that the general formula for biomass grown under carbon-limited 

conditions is 
1.8 0.5 0.2CH O N

,
 or 1.8 0.5 0.2 0.002 0.02CH O N S P  when sulfur and phosphorus are 

taken into account (Heinzle et al. 2007). Based on our results, anammox biomass has a 

lower H in the case of scenario II, but silmiar O and N contents when compared with 

above general formula. In addition, the S content in anammox biomass is significantly 

high though the reason is unclear.  

Based on Table 3.1, the ratio of VSS/SS increased from 75% to 84% as C content 

increased in anammox granules, in agreement with Liu et al. (2005) who found a 

positive corelation between C content and the VS/TS ratio of P-accumulating microbial 

granules.  

Table 3.1. Elemental analysis of anammox biomass. 
Scenario C, % H, % O, % N, % S, % Molecular formula MLVSS/MLSS 

I (30 mM of 

inf. NH4
+ -N) 

33.2±0.9 4.7±0.1 33 6.5±0.2 3.82±0.49 1.7 0.85 0.15 0.04CH O N S  0.75 

II (35 mM of 

inf. NH4
+ -N) 

35.3±0.4 3.8±0.7 34.9 6.7±0.1 2.1±0.1 1.28 0.74 0.16 0.02CH O N S  0.84 

 

3.2 Development of Nitritation-Anammox Process in UASB #2 Reactor 

The experimental period was divided into two phases. During phase I (330 days), 

anammox granules were enriched under strict DO control. The goal of phase II (>250 

days) was to cultivate nitritation-anammox biomass under low oxygen conditions.  

An important factor in the successful startup of anammox process is to ensure 

efficient biomass retention. Anammox bacteria have a natural ability to form 
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biofilms (Abma et al. 2007). The biofilms can then form dense, well settling 

aggregates in a granular sludge type system, such as UASB. After obtaining 

sufficient anammox granules, oxygen gas was cautiously supplied to facilitate the 

growth of AOB. The hydraulic mixing conditions in the reactor was caused by 

effluent recirculation, oxygen gas supply and nitrogen gas production, resulting in 

good suspension of the biomass and dilution of high influent strength.   

3.2.1 Enrichment of the anammox granules 

Addition of red anammox biomass has been reported to significantly accelerate 

start-up and enhance reactor performance (Tang et al. 2011), which was also 

confirmed during the start-up of the first full-scale anammox reactor (van der Star et 

al. 2007). Therefore, 300 mL of the anammox granules (80-90% enriched) from 

UASB #1 reactor as well as the inactive methanogenic granules were used as 

inoculum for enrichment of anammox granules in UASB #2 reactor.  

At the start-up stage, the reactor was initially fed with the synthetic wastewater 

with a relatively low nitrogen loading rate (NLR). Then the reactor was continuously 

operated for about 200 days with NH4
+
-N of 210 mg/L and NO2

-
-N of 252 mg/L 

(ratio=1.2) as the substrates until it achieved sufficient anammox granules (data not 

shown). During this period, some small flocs detached from granules were washed out, 

and new granulation process occurred. The anammox bacteria grew and attached on the 

surface of granules. The color of the methanogenic granules at the bottom 

(approximately 30%) of sludge bed gradually turned from blackish to brownish, while 
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the inoculated anammox granules remained red and became larger, suggesting that the 

anammox bacteria grew well in the reactor.  

  

 

Figure 3.6. Reactor performances during Phase I. 

(A) Concentration profile of NH4
+
-N. (B) Concentration profile of NO2

-
-N. 

Then the NLR was elevated by increasing the influent ammonium and nitrite 
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subsequently, implying the significant enhancement in the activity of anammox 

bacteria. The NLR was gradually increased once the reactor exhibited stable 

performance. As shown in Figure 3.6, NH4
+
-N and NO2

-
-N concentrations were raised 

up to 350 mg/L and 420 mg/L, respectively. The average NH4
+
-N, NO2

-
-N and total 

nitrogen removal efficiencies were 98.8%, 97.9%, and 88.5%, respectively. On Day 37, 

nitrite accumulation was up to 56 mg N/L. However, this decrease in anammox activity 

was reversible.  

The gas emission rate profile was depicted in Figure 3.7. The general trend was that 

the nitrogen gas production rate increased as the NLR increased. The mean gas emission 

rate was 1.8 L/d for the last 66 days when NLR was maintained at 0.51 kg/m
3
/d. 

 

Figure 3.7. The profile of gas emission rates during Phase I. 
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anammox granules with diameters of 0.5-4.5 mm were visible at the bottom of the 

reactor (40-50% of sludge layer).  

Nitritation-anammox process in a single reactor has been developed mostly by 

inoculating nitrifying sludge into anammox reactors (Sliekers et al. 2003, Third et al. 

2001), and less frequently by inoculation of anammox biomass into partial nitrification 

reactors (Gong et al. 2008, Vazquez-Padin et al. 2009b). In this study, 200 mL of aerobic 

activated sludge was inoculated in the reactor, intending to provide AOB sources for 

developing nitritation-anammox biomass. Most of heterotrophic bacteria went through 

starvation when exposed in the medium without organic carbon, eventually died and 

were washed out of the reactor. 

The TN removal performance depends on the reactor setup, operational conditions 

and the activities of each bacterial group. For successful start-up and operation of the 

combined nitritation- anammox process, AOB are supposed to convert approximately 

half of the supplied ammonium to nitrite under oxygen-limiting conditions. In turn, the 

produced nitrite together with the remaining ammonium is converted to N2 by anammox 

bacteria. Nitritation a critical step because it is rate-limiting and difficult to develop 

and maintain suitable conditions (Cho et al. 2011). Nitrite is seldom accumulated in the 

reactors due to its fast conversion rate to nitrate (Satoh et al. 2003). Thus, a suitable 

environment must be provided to accumulate AOB but eliminate or inhibit NOB 

based on the differences of their specific growth rates. According to previous 

studies, the growth and activity of NOB can be prevented based on their lower 

affinities for oxygen compared to AOB as well as for nitrite compared to anammox 
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bacteria (van der Star et al. 2008a). In addition, NOB can be successfully washed 

out at high temperatures between 30 and 40 °C with a short SRT of about 1.5 days 

(Hellinga et al. 1998).  

The possible microorganisms involved in a single-stage nitritation-anammox 

reactor and their relationships are summarized in Table 3.2. Anammox bacteria 

thrive by competition as well as by delicate metabolic interactions with other 

organisms associated with nitrogen cycle (Kartal et al. 2012). 

Table 3.2. The possible microorganisms existing in the microbial community and 

their relationships 
Microorganisms Relationship Remarks 

AOB vs. NOB 
Competition Competing for O2. 

Commensalism NOB consume nitrite produced by AOB. 

AOB vs. Anammox 

bacteria 

Competition 
Competing for ammonium. AOB might compete for nitrite 

through nitrifier denitrification pathway. 

Commensalism 

Anammox bacteria consume nitrite produced by AOB. In 

addition, the activity of AOB consume O2 resulting in a 

suitable oxygen level for anammox bacteria. Anammox 

process can supply some alkalinity since nitritation process 

will lower pH. 

NOB vs. Anammox 

bacteria 
Competition Competing for nitrite. NOB should be eliminated. 

Denitrifier vs. 

Anammox bacteria 
Commensalism 

Denitrifier can take care of nitrate produced by anammox 

bacteria when organic carbons are available. It may also 

consume soluble microbial products (SMPs) produced 

during anammox metabolism and biomass decay. 

 

The strategy used in this study was to fix ammonium concentration to be 350 mg 

N/L (25 mM) but gradually reduce nitrite concentration from 420 mg N/L to 0 in the 

influent. Correspondingly, the ratio of influent NO2
-
-N/NH4

+
-N decreased from 1.2 to 

0. The amounts of oxygen supply were controlled and adjusted by gas flow meter 

according to the results of on-line ORP and DO probes. The substrate compositions 

during the Phase II were shown in Table 3.3 and Table A.3 in Appendix B.  
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 Table 3.3. Operation time for various ratios of influent NO2
-
-N/NH4

+
-N during Phase II 

Influent NO2
--N/NH4

+-N 1.2 1.1 1 0.8 1 

Operation time/day 1-14 14-27 27-70 70-94 94-114 

Influent NO2
--N/NH4

+-N 0.9 0.8 0.7 0.6 0.5 

Operation time/day 114-138 138-142 142-149 149-174 174-180 

Influent NO2
--N/NH4

+-N 0.4 0.3 0.2 0.1 0 

Operation time/day 180-203 203-218 218-237 237-247 247- 

 

At the beginning of Phase II, the reactor was operated anaerobically for about 4 

weeks. For the first two weeks, the reactor was fed with 350 mg N/L (25 mM) 

ammonium and 420 mg N/L (30 mM) nitrite (ratio=1.2). Within this period, anammox 

bacteria were responsible for most ammonium and nitrite consumptions. Since Day 27 

when the ratio of influent NO2
-
-N/NH4

+
-N decreased to 1, pure O2 was introduced to 

the reactor to facilitate the AOB growth. Anammox bacteria consumed most of NH4
+
 

when the ratio was high (ratios of 0.9 and 1). To avoid inhibition of anammox bacteria, 

O2 was supplied in such a way that it was below 0.2 mg O2/L. As the influent nitrite 

continued to decrease, O2 supply was increased slowly because more ammonium was 

required to be converted to nitrite by AOB.  

The nitrite comes from two sources, including nitrite present in the influent 

(except the last stage without additional nitrite) and the conversion of ammonium to 

nitrite by AOB. During the entire operation time at Phase II, there was no nitrite 

accumulation in effluent though a complete nitrite removal has not been achieved. 

The mean nitrite concentration in the effluent was about 1.8 mg N/L. Such a small 

amount of nitrite leftover may contribute to higher activity of AOB than anammox 

bacteria.  
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On Day 70, the ratio of influent NO2
-
-N/NH4

+
-N decreased from 1 to 0.8, resulting 

in a sudden increase of effluent ammonium (up to 108 mg N/L). Probably the abundance 

of AOB was insufficient to bear the shock load of ammonium at that time. After feeding 

the influent ratio of 1 medium, the reactor performance recovered slowly.  

On day 247, the concentration of ammonium remained the same (350 mg N/L) 

but nitrite was no longer supplied to the reactor. After this point, the nitrite required 

for the anammox reaction was completely produced by the AOB. The average nitrite 

accumulation at this stage was 2.8 mg N/L, which was a little bit high than before. 

The possible reason was that AOB activity was higher than anammox bacteria 

because of improved oxygen supply. 
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Figure 3.8. Reactor performances during Phase II. 

(A) Concentration profile of NH4
+
-N. (B) Concentration profile of NO2

-
-N. 

(C) Concentration profiles of NH4
+
-N, NO2

-
-N, NO3

-
-N and TN removal efficiency. 

Anammox bacteria oxidize part of nitrite to nitrate to reduce equivalents necessary 

for cell carbon fixation (Hu et al. 2013c). Therefore, nitrate production is observed 

during the growth of anammox bacteria. The control of nitrate production is very 

important since it affects the TN removal efficiency. Two pathways are related to nitrate 

conversion in the nitritation-anammox system. First, NOB can convert nitrite to nitrate if 

oxygen supply is more than AOB requirement. Second, denitrifying bacteria may 

convert nitrate to N2 when the organic carbon sources are available (e.g., SMPs 

produced during cell lysis or decay of functional bacteria). Based on FISH results (as 

discussed below), the activities of NOB were suppressed under low oxygen condition, 

and therefore NOB did not likely contribute to nitrate formation. 
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The mean nitrate concentration was 36±18 mg N/L. On day 191 (influent NO2
-
-

N=140 mg/L) and day 210 (influent NO2
-
-N=105 mg/L), nitrate concentrations went up 

to 106.5 and 86.9 mg N/L, respectively, possibly due to NOB activity with the increased 

oxygen supply, which was also proven by ORP of above 180 mV (Figure 3.12). 

Based on Figure 3.9, compared with the ratio of influent NO2
-
-N/NH4

+
-N, the 

variation of the observed NO3
-
-N/NH4

+
-N was relatively small, as long as the ORP/DO 

was maintained in the appropriate range (as discussed below). The average ratio of 

observed NO3
-
-N/NH4

+
-N was 0.11, which was slightly smaller than the ratio of 0.13 

proposed in CANON equation (Eq. (3.3)). A higher ratio of 0.18 was reported, where the 

influent NO2
-
-N/NH4

+
-N ratio was 0.71 (Hu et al. 2013c). As mentioned above, lower 

nitrate production in this research might be associated with denitrification process 

because denitrifiers were detected by FISH (Figure 3.17). 

 

Figure 3.9. The ratios of influent NO2
-
-N/NH4

+
-N, observed NO2

-
-N/NH4

+
-N and 

observed NO3
-
-N/NH4

+
-N during Phase II. 
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Figure 3.10 shows the changes of total NLR and nitrogen removal rate (NRR) with 

time. The graph showed a progressive decrease of the loading rate and removal rate 

during Phase II. 

 

Figure 3.10. The profiles of total NLR and NRR during Phase II. 

In the nitritation-anammox system, H
+
 is produced during the ammonium oxidation 

by AOB, while H
+
 is also consumed by anammox bacteria. The final effluent pH 

depends on their activity intensities. HCl (0.1 M) was used to adjust pH to 7.6-7.8 when 

the ratio of influent NO2
-
-N/NH4

+
-N was 1-1.2. It was observed that much less HCl was 

consumed when the ratio was 1, possibly due to the balance of increased alkalinity by 

anammox process and decreased alkalinity by AOB. However, when the ratio of influent 

NO2
-
-N/NH4

+
-N was reduced to 0.8, the effluent pH decreased significantly (as low as 

6.52), which may inhibit the activities of AOB and anammox bacteria. Thus, starting 

from Day 74, NaOH with various concentrations depending on the influent substrate 

compositions were applied to buffer the liquid in the reactor. The consumption of base 
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increased as the nitrite concentrations decreased in the influent because of high AOB 

activities. The effluent pH in the nitritation-anammox system will eventually decrease 

due to the net H
+
 production, which can be seen from Eq. (3.3).  

CANON:  4 2 3 2 20.85 0.13 0.435 1.4 1.3NH O NO N H H O                    

Eq. (3.3) 

The changes of online pH values versus time were presented in Figure 3.11. Overall, 

the pH was successfully maintained in the range of 7-8, which was lower than the 

previous studies (Cho et al. 2010, Qiao et al. 2010). They suggested that high pH and 

NLR were required to establish partial nitrification. The pH values occasionally fell 

below 7 due to the depletion of NaOH solution.  

 

Figure 3.11. The pH profile during Phase II. 
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very important. The oxygen supply should meet the requirement of AOB but not inhibit 

anammox bacteria and favor NOB growth. NOB was inhibited at DO concentrations 

≤1.0 mg O2/L (Hanaki et al. 1990, Turk and Mavinic 1989), probably because the lower 

growth rate of NOB than AOB at DO concentrations below 1.0 mg O2/L
 
(Park and 

Noguera 2004, Tokutomi 2004). In addition, it was reported that NOB was outcompeted 

at low DO concentrations (<0.5 mg O2/L), due to their weaker affinity for oxygen as 

compared to AOB (Bernet et al. 2001).  

The ORP has been widely studied as a parameter for online monitoring and control 

of BNR process since the early 1980s (Charpentier et al. 1998, Kim and Hao 2001, Li 

and Bishop 2002, Tanwar et al. 2008). It has been considered as a more sensitive 

parameter for process control compared to pH or DO due to its high signal range 

(Lackner and Horn 2012). For instance, the ORP has been applied to detect ammonium 

or nitrate depletion to control the durations of aerobic and anoxic phases in BNR 

systems (Akın and Ugurlu 2005, Ra et al. 2000). Researchers have suggested that certain 

biochemical events such as the depletion of organic carbon or ammonium under low 

oxygen condition, and aerobic/anoxic/anaerobic shifting environments, can be readily 

detectable by on-line ORP profile (Holman and Wareham 2003). In contrast, other 

control parameters such as the DO may only show little or no change in these situations. 

Therefore, online ORP could become a promising technology for the automated control 

of the BNR process.  

Thus, the ORP may provide insight into the state of the system (e.g. aerobic, anoxic 

or anaerobic conditions). To my best knowledge, the application of ORP as a monitoring 
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or controlling parameter for developing and operating the combined nitritation-anammox 

process in a UASB reactor has not yet been investigated. 

The profiles of ORP, DO and oxygen flow rate during Phase II were shown in Figure 

3.12. Variations in influent substrate concentrations, oxygen flow rate and effluent 

quality could conceivably influence the ORP profile. On days 180, 186 and 193 where 

ammonium levels were reduced to very low levels (below 0.6 mg N/L), abrupt increases 

in ORP were found. The similar observations have been reported by Holman and 

Wareham (2003), who suggested that the real-time ORP process control system could 

detect the changes in ORP slope and theoretically reduce aeration intensity at 

ammonium turning points, resulting in significant cost-savings on energy consumption. 

Based on the results, ORP had a higher sensitivity than DO at low-oxygen levels, but 

there was no obvious relationship between ORP and DO, though a strong linear 

relationship between ORP and the log of DO was found by Ndegwa et al. (2007). During 

the first 240 days, most of the ORP levels fell on the range of -25--75 mV. ORP dropped 

to negative values when the ratio of influent NO2
-
-N/NH4

+
-N reduced to 0.1 (35 mg N/L 

of nitrite). In contrast, DO levels were still around 0.2-0.3 mg O2/L. However, the ORP 

increased to positive valves when the influent was absent of nitrite on Day 247. For the 

last 7 days, ORP increased rapidly (up to 260 mV) with the average oxygen supply rate 

of 35 L/d, leading to an excellent ammonium removal efficiency (99.5%). The 

increasing ORP value represents the improvement of the redox status in the reactor. 

Meanwhile, DO concentrations exhibited in the range of 0.2-0.4 mg O2/L. According to 
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the entire experimental period, DO level ≤0.5 mg O2/L was recommended to startup and 

operate nitritation-anammox reactors. 

 

Figure 3.12. The profiles of ORP, DO and oxygen flow rate during Phase II. 

3.2.4 Characteristics of nitritation-anammox granules 

The nitritation-anammox granules cultivated in UASB #2 reactor had several notable 

features. First, the granular biomass was desirable for the substrates dispersion and 

gas diffusion (e.g. N2, O2). Second, the biomass retention in the reactor was guaranteed 

due to the excellent settling ability of high-density granules. Third, a high conversion 

rate was achieved in the granular sludge reactor due to high biomass concentration and a 

large surface area for mass transfer.  

Up flow velocity in the reactor was controlled at 1.5-1.6 m/h to maintain the sludge 

layer in suspension and wash out the flocky sludge, which can promote granulation 
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process. However, together with the oxygen supply, it may also cause incidental losses 

of AOB and anammox biomass.  

There were plenty of typical red anammox granules after Phase I. However, the 

color of biomass has changed gradually as oxygen gas was introduced to facilitate 

the formation and enrichment of nitritation-anammox biomass during Phase II. 

Those transitions of anammox granules to AOB-anammox granules were shown in 

Figure B.2. In general, the biomass mixture was composed of granules with different 

colors. The typical red anammox granules progressively changed color from dark red 

to light red even to reddish because the AOB (also other bacteria) grew in the same 

granules after starting aeration. The similar color transition was also reported by 

Cho et al. (2011), while developing a simultaneous partial nitrification-anammox 

process in an up-flow biofilm reactor. Most importantly, more and more granules with 

brown-yellow color were observed. The color was recognized as the typical sign of 

nitrifiers (Wang et al. 2008). Alleman and Preston (1991) also pointed out that nitrifying 

biofilms tend to have a brown to orange-brown color, which turns reddish brown as the 

fraction of nitrifiers increases.  

The size distribution of the granules is depicted in Figure 3.13. The mean diameter of 

the granules was 3 mm. Over 55% of the granules had a settling velocity over 100 m/h 

that was similar to the anammox granules in UASB #1 reactor. It should be mentioned 

that the granule samples used to determine size distribution and settling velocity were 

collected from the reactor at a height of 15 cm from the bottom (Figure B.3). Thus, the 
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granules at the bottom of sludge bed should have even larger size and higher settling 

velocity.  

 

Figure 3.13. Particle size distribution of the nitritation-anammox granules by number 

3.2.5 Microbial community composition of nitritation-anammox granules 

Previous studies have investigated the effects of seed biomass and operating 

conditions on the formation and microbial population of aggregates (Vazquez-Padin et 

al. 2009b, Vlaeminck et al. 2010). The spatial distributions and activities of AOB and 

anammox bacteria in the aggregates from CANON reactor have been reported (Nielsen 

et al. 2005). Under oxygen-limiting conditions, researchers observed that anammox 

bacteria were present in the inner anoxic zone of biofilms or aggregates, while AOB 

survived in the outer aerobic zone (Kindaichi et al. 2007, Nielsen et al. 2005), possibly 

due to the DO concentration gradient created in the biofilms. Different types of 

microorganisms tend to predominantly grow in the specific spots with suitable 

conditions. 
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Nitritation-anammox biomass was highly enriched in UASB #2 reactor by 

introducing limited amounts of oxygen. For one typical granule, anammox bacteria 

accounted for about 60% of total bacteria, while AOB accounted for 35%.  

On day 201, granule samples were collected for analyzing microbial community 

composition. Figure 3.14 shows microbial community structure in FISH images using 

NSV443 and NSE1472 probes that target AOB, and Amx820 probe that targets 

anammox bacteria. As shown in those images, AOB and anammox bacteria co-existed in 

the same granule. Furthermore, they were overlapping each other. This is different from 

previous studies (Meng 2012, Okabe et al. 2011b). They found that anammox bacteria 

were present throughout the granules, while AOB were detected only in the granule 

surface and around the clusters of anammox bacteria. Though oxygen was supplied to 

the reactor, anammox bacteria were able to survive under the low DO conditions (below 

0.5 mg/L). With such a distinctive and overlapping growth features, anammox can 

consume nitrite immediately as it is produced by AOB. In addition, the majority of 

microorganisms were observed on the outer layer of granule, where oxygen and 

substrates are more readily available. For instance, AOB and anammox bacteria compete 

for NH4
+
 since it is a co-substrate of the partial nitrification and anammox processes. The 

granules are porous which benefits substrate dispersion and oxygen diffusion. The 

spatial distributions of microorganisms would improve their competitive advantages. 

The hollow structure characteristic may be caused by N2 release during anammox 

process. Anammox bacteria and AOB comprised approximately 90% of the population, 
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which was confirmed by counterstaining with DAPI (4, 6-diamidino-2-phenylindole) 

(data not shown).  

.   
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(C) 

Figure 3.14. AMX820 probe targeting Brocadia- and Kuenenia- like anammox bacteria 

was labeled with TXRD (red). NSE1472 and NSV443 probes targeting Nitrosomonas 

europaea and Nitrosospira spp. were labeled with FLC (green).  

(A), (B) and (C) represent the different zones in the same nitritation-anammox granule. 

                                                                                                                                                           

 

Figure 3.15. FISH micrographs with FLC-labeled NSE1472 and NSV443. 

FISH analysis of the granules from the nitritation-anammox reactor showed a clear 

increase of AOB population abundance after aeration.                                                                                                                                                         

(A) (B) 
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Figure 3.15 (A) shows that AOB were observed in a brown-yellow granule, which 

presumably contain abundant AOB. As expected, AOB were present throughout the 

sample, but more concentrated in the outer part of granule. The close-up image also 

showed an apparent hollow structure (Figure 3.15 (B)). The high enrichment of AOB 

resulted from application of high ammonium loading rate, high temperature, and absence 

of organic carbon in synthetic medium (Okabe et al. 2011a).  

 

Figure 3.16. FISH micrograph with TXRD-labeled NIT3 (targeting Nitrobacter spp.). 

NOB exhibited a lower affinity to nitrite than anammox bacteria when both nitrite 

and O2 were limited. Thus, anammox bacteria over-competed NOB and consumed nitrite 

produced by AOB (Blackburne et al. 2008, Schramm et al. 2000). No hybridization 

signal was observed for most granules when Nitrobacter-specific probe NIT3 was used. 

Based on FISH results, the activity of NOB can be suppressed under low oxygen 

condition and therefore NOB did not likely contribute to nitrate formation. Figure 3.16 
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shows the only granule sample with detectable Nitrobacter, which was present in the 

outer part of the granule, probably because oxygen is readily available. High AOB 

abundance in the granules without NOB accumulation was an important reason leading 

to stable long-term operation of the nitritation-anammox system.  

 

Figure 3.17. FISH micrograph with FLC-labeled ACI208 (targeting Acidovorax spp.). 

Figure 3.17 shows a granule where denitrifying bacteria were detected. It is 

reasonable that denitrification process might take place in the reactor when nitrite/nitrate 

and organic carbon become available. Although no organic carbon source was provided 

in the feeding medium, cell lysis or decay may provide organic carbon as electron 

donor to convert nitrite or nitrate to N2. That also partly explains the relatively low 

nitrate concentrations in the effluent.  
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

The excess nitrogen discharging into water bodies causes significant negative 

impacts on the environment and ecosystem, such as eutrophication, and toxicity to 

aquatic organisms. In contrast to conventional BNR process, the innovative autotrophic 

nitrogen removal process offers higher nitrogen removal efficiency, considerable savings 

in both energy and organic carbon consumptions, as well as the reduction of GHG 

emission and sludge production, especially for treating wastewater rich in ammonium 

but devoid of organic carbon. An efficient biomass retention is required for succeful 

start-up and operation of the innovative process due to the low growth rates of 

autotrophs (e.g., anammox bacteria, AOB). The UASB reactor provides a desirable 

condition for granulation, resulting in an excellent settling ability of biomass.  

Two similar laboratory-scale UASB reactors have been developed for this research. 

The UASB #1 reactor was used to study the substrate conversion involved in the 

anammox process under complete absence of oxygen. The reactor was operated at 35±2 

°C and with a hydraulic residence time (HRT) of 24 h. The ratio of influent NO2
-
-

N/NH4
+
-N was optimized and the optimal ratio was applied to evaluate long-term reactor 

performance under steady-state operating conditions. Under various ratios of influent 

NO2
-
-N/NH4

+
-N, the ratios of observed NO2

-
-N/NH4

+
-N were not in agreement with the 

proposed ratio of 1.32, but showed a positive correlation with influent ratios. 

Ammonium accumulation was observed when the reactor was fed with lower influent 

ratios (1 and 1.1), while nitrite and nitrate accumulations occurred when influent ratio 
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was 1.31. Thus, the optimal influent ratio of NO2
-
-N/NH4

+
-N in the UASB #1 reactor 

was 1.2, since it yielded the highest TN removal efficiency (on average 96%-97%) 

without accumulating any nitrogenous ions. Based on the substrates conversion and 

mass balance, an empirical equation which does not take account into cell synthesis was 

proposed as
4 2 2 3 21.2 0.08 1.04 0.12 2.04NH NO H N NO H O        for UASB #1 reactor. 

The elemental formulas of the anammox granules obtained from the two operation 

scenarios were 1.7 0.85 0.15 0.04CH O N S and
1.28 0.74 0.16 0.02CH O N S , which were different from the 

previously proposed CH2O0.5N0.15.  

The combined nitritation-anammox process was developed in a single-stage UASB 

#2 reactor seeded with anammox granules, inactive methanogenic granules and aerobic 

activated sludge. The strategy used in this study was to fix ammonium concentration 

to be 350 mg N/L (25 mM) but gradually reduce nitrite concentration from 420 mg 

N/L to 0 in the influent. Thus, the nitrogen loading rate decreased as the reduction of 

influent nitrite. The favorable conditions (e.g., high temperature, low oxygen level) were 

optimized to facilitate the synergistic effects on the growth of AOB and anammox 

bacteria but depress NOB activity. The start-up took longer than expected. It may be 

shortened by increasing oxygen level (below 0.5 mg/L) from the early stage to stimulate 

AOB growth. ORP was found to be a sensitive tool to monitor the oxidation-reduction 

conditions in the reactor.  

The nitritation-anammox bioreactor was operated for over 250 days without 

nitrite/ammonium accumulation and was able to remove 90% of the supplied nitrogen 

loads. The nitritation-anammox granules were successfully enriched with different 
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colors, such as brown-yellow, red, light red, reddish, etc., depending on the microbial 

community compositions. Granules with porous structure had a mean diameter of 3 mm 

and featured good settling ability (a high settling velocity of 100 m/h). 

The microbial community composition in UASB #2 reactor was investigated by 

FISH, which showed the coexistence of AOB and anammox bacteria in the granules. 

The two groups of bacteria grew overlapping each other so that the nitrite produced by 

AOB can be consumed immediately by anammox bacteria. Most NOB were believed to 

be eliminated by application of high temperature and low oxygen level, which was also 

proved by FISH results.  

4.2 Future Work 

1) AOB and anammox bacteria have abilities to thrive at the temperature below 10°C in 

the natural ecosystems (e.g. OMZs), indicating that both groups of microorganisms 

are capable of outcompeting NOB under low temperatures. Thus, investigation of the 

nitritation-anammox reactor performance under low temperatures is recommended. 

2) N2O emissions have been observed in nitritation-anammox systems under oxygen 

limiting-conditions. AOB were regarded as major contributors. Thus, the study of 

N2O emission from the nitritation-anammox UASB reactor is needed. 

3) Study of leftover nitrate removal with organic carbon oxidation by denitrification in 

the nitritation-anammox systems is worth to pursue since denitrifiers have been 

detected in the granules in this study.  

4) Further studies are warranted to determine the feasibility of the application of such a 

process at pilot-scale and full-scale and its application to real wastewater. 
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APPENDIX A. SUPPLEMENT TABLES 

Table A.1. Influent substrate compositions for determination of the optimal ratio of 

influent ammonium-N to nitrite-N in UASB #1 reactor. 

Set Substrate NH4-N/NO2-N g/L mmol N/L mg N/L 

I 

(NH4)2SO4  
1.98 30 420 

NaNO2 

1.31 2.712 39.3 550.2 

1.2 2.484 36 504 

1.1 2.277 33 462 

II 

(NH4)2SO4  
2.31 35 490 

NaNO2 

1.31 3.164 45.85 641.9 

1.2 2.898 42 588 

1.1 2.657 38.5 539 

 1 2.415 35 490 

 

Table A.2. Influent substrate compositions for evaluation of the long-term performance 

under steady-state conditions in UASB #1 reactor. 

Scenario 
Period (NH4)2SO4 NaNO2 TN Loading Rate 

days mg N/L kg/m3/d 

I 126 420 490 0.92 

II 80 504 588 1.08 

 

Table A.3. Influent substrate compositions for cultivation of the AOB and anammox 

bacteria in UASB #2 reactor during Phase II. 
Substrate NH4-N/NO2-N g/L mmol N/L mg N/L 

(NH4)2SO4  
1.65 25 350 

NaNO2 

1.2 2.070 30 420 

1.1 1.898 27.5 385 

1 1.725 25 350 

0.9 1.553 22.5 315 

0.8 1.380 20 280 

0.7 1.208 17.5 245 

0.6 1.035 15 210 

0.5 0.863 12.5 175 

0.4 0.690 10 140 

0.3 0.518 7.5 105 

0.2 0.345 5 70 

0.1 0.173 2.5 35 

0 0.000 0 0 
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APPENDIX B. SUPPLEMENT FIGURES 

 

        

Figure B.1. Mature anammox granules in UASB #1 reactor on Day 66 under steady state 

operating condtion (Influent NH4
+
-N=35 mM). 
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Figure B.2. Color changes of granules in UASB #2 reactor. 
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  Figure B.3. Granules in UASB #2 reactor. 
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APPENDIX C. LIST OF ABBREVIATIONS 

Anammox anaerobic ammonium oxidation 

ANME-D  anaerobic methane oxidation coupled to denitrification 

ANMR anammox non-woven membrane reactor  

AOB aerobic ammonium-oxidizing bacteria  

BNR biological nitrogen removal  

CANON completely autotrophic nitrogen removal over nitrite 

COD chemical oxygen demand 

CSTR completely stirred tank reactor  

CTR column type reactor 

DAPI 4, 6-diamidino-2-phenylindole 

DEAMOX  denitrifying ammonium oxidation 

DEMON the pH-controlled deammonification system 

DO dissolved oxygen  

EPA environmental protection agency 

FISH fluorescence in situ hybridization  

FITC fluorescein isothiocyanate  

GHG greenhouse gas  

GLR gas-lift reactor 

HAO hydroxylamine oxidoreductase  

HDH/HZO hydrazine dehydrogenase/oxidoreductase  

HRT hydraulic retention time  

HZS hydrazine synthase  

LDPE low density polyethylene  

MABR membrane aerated biofilm reactor 

MBBR moving bed biofilm reactor  

MLSS mixed liquor suspended solid 

MLVSS mixed liquor volatile suspended solid 

MMTCO2E million metric tons carbon dioxide equivalent 
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MSBR membrane sequencing batch reactor 

n-damo denitrifying methanotrophic bacteria 

NirS nitrite reductase  

NLR nitrogen loading rate 

NOB Nitrite-oxidizing bacteria  

NRBC non-woven rotating biological contactor  

NRR nitrogen removal rate 

OCT optimal cutting temperature 

OLAND oxygen-limited autotrophic nitrification-denitrification 

OMZ oxygen minimum zone 

ORP oxidation reduction potential  

PBS phosphate-buffered saline  

PN partial nitrification  

PVC polyvinylchloride 

ROC rotating biological contactor 

SBR sequencing batch reactor  

SHARON single reactor system for high-rate ammonium removal over nitrite 

SMP soluble microbial product 

SNAD simultaneous partial nitrification, anammox and denitrification 

SNAP single-stage nitrogen removal using anammox and partial nitritation 

SRT sludge residence time/solids retention time 

TEA terminal electron acceptor  

TGA thermogravimetric analyzer  

TN total nitrogen  

UAGSB upflow anammox granular sludge bed 

UASB upflow anaerobic sludge blanket  

UFFBB up-flow fixed-bed biofilm reactor 

WWTP wastewater treatment plant 
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